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1. Abstract
Tidal wetlands provide vital resources for the state of Delaware, crucial not only 
for maintaining important ecosystem functions, but also for providing human 
populations with substantial services. Healthy wetland networks offer protection 
from severe weather, reduce flooding, improve water quality, and provide 
opportunities for education and recreation. However, human activities in 
combination with natural events, continue to cause substantial loss of wetland 
cover and damage wetland health. Over the last thirty years, the state of Delaware 
has experienced a net loss of roughly 5,000 acres of wetland. In collaboration with 
the Delaware Department of Natural Resources and Environmental Control 
(DNREC), the team used NASA Earth observations including Landsat 5 Thematic 
Mapper (TM), Landsat 8 Operational Land Imager (OLI), Terra Moderate 
Resolution Imaging Spectroradiometer (MODIS), and Global Precipitation 
Measurement Integrated Multi-Satellite Retrievals (GPM IMERG) to develop a 
methodology to monitor recent changes in wetland cover and forecast landward 
marsh migration due to sea-level rise, changes to climate, and human 
development. Trend analysis of current and past climate conditions in precipitation
and temperature revealed an overall increase in both metrics. Using Land Change 
Modeler in TerrSet and Suitability Modeler in ArcGIS Pro, the team visualized 
landcover shifts over the last 20 years, indicating a general pattern of net wetland 
loss and identified locations where marsh migration could potentially occur in the 
future. These observations will enable better planning for restoration activities and
inform decision-making to preserve wetland health and ecosystem functions.

Key Terms
Delaware, coastal wetlands, remote sensing, Land Change Modeler, Landsat, sea-
level rise

2. Introduction
2.1 Background Information
Tidal wetlands are an integral part of Delaware’s coastal ecology, providing 
numerous ecosystem services and direct economic and societal benefits to the 
state. Tidal wetlands include a variety of aquatic environments such as freshwater 
tidal marsh, salt marsh, and brackish marsh. These wetlands aid in carbon 
sequestration and water purification, while simultaneously providing habitat for 
native species, protection against storm surges, and opportunities for recreation 
(Barbier et al. 2011). Over the last few decades, this important resource has been 
under tremendous stress from increasing human activity and sea-level rise (SLR). 
According to the Department of Natural Resources and Environmental Control 
(DNREC), Delaware has lost approximately 5,000 acres of its wetlands in the last 
thirty years due to residential development and conversion to agriculture (Tiner et 
al. 2011). In 2006, stressors from high densities of human population, specifically 
along the coastal region of Delaware, showed a correlation with sudden wetland 
dieback (SWD) in salt marsh wetland habitat (Rogerson et al. 2009). While 
significant wetland loss is due to land reclamation, wetland stresses are likely to 
become aggravated by shifts in climate and SLR rates (Blankespoor et al. 2014). 
The study area for this project is the state of Delaware, with an emphasis on the 
coastal region. This study examined wetland migration trends over the previous 
decade (2010-2020), projected those trends to the year 2050, and analyzed current
patterns for marshland habitat. Prior wetland classification studies have 
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demonstrated the benefits of using satellite imagery in combination with Digital 
Elevation Models (DEM) and high spatial resolution aerial photography for 
classifying wetland types, among other landcover classes (Lamb et al. 2019; Wang 
et al. 2019). Satellite imagery, though varying in spatial and temporal resolution, 
can provide long-term documentation of marsh classification attributes, such as 
surface and soil hydrology and the presence of hydrophilic vegetation (Correll et 
al. 2018). Even using a combination of these data sources, classifying wetlands 
remotely remains a challenge. Supervised classification using the Random Forest 
(RF) machine learning algorithm for wetland classification showed the most 
promise in terms of accuracy, efficiency, and ease of use with our intended 
datasets, with an accuracy over 85% when used to classify Landsat 8 Operational 
Land Imager (OLI) data in a coastal wetland study (Wang et al. 2019). The use of 
RF machine learning allowed the team to analyze large, complex datasets to best 
understand the current conditions of Delaware’s coastal wetlands and forecast 
trends for future restoration strategies.

Figure 1. Study area map depicting the state of Delaware in the Northeastern
United States.

2.2 Project Partners & Objectives
The partner for this project was DNREC, an organization that aims to protect 
public health and the environment of the state of Delaware while providing areas 
for outdoor recreation. DNREC also leads the energy policy and climate 
preparedness for the state in addition to educating the public on historical, 
cultural, and natural resource use importance. DNREC was specifically interested 
in this project due to the growing concern of wetland habitat loss and tidal marsh 
migration occurring along Delaware’s coast. The data and information provided by 
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this project will assist DNREC in making decisions about where to focus on marsh 
migration efforts and wetland expansion projects. 

This project had four main objectives. The first was to identify current and future 
wetland habitats, marsh locations, and changing climate variables. Using these 
observations, the team analyzed LULC (Land Use Land Cover) change and marsh 
migration over the past decade, as well as climate variable trends since 2000. 
Next, the team generated maps of wetland habitat and marsh locations during the 
study period. Finally, these maps were used to predict areas of likely landward 
marsh migration in different land cover change scenarios. The team provided a 
thorough methodology for DNREC to use in the future to create similar end 
products.

3. Methodology
3.1 Data Acquisition 
3.1.1 Land Use Land Cover Change
The team used surface reflectance data from Landsat 5 Thematic Mapper (TM), 
Landsat 8 OLI, and aerial photography from National Agriculture Imagery Program
(NAIP, Table 1). To obtain Landsat imagery, image collections for the 2010 
(Landsat 5 TM) and 2020 (Landsat 8 OLI) date ranges were loaded through Google
Earth Engine (GEE), and pixels averaged across images from April through August.
The same process was repeated with NAIP imagery for the year 2018. For the 
forecasting portion of the LULC analysis, the team compiled additional data from 
Delaware’s FirstMap website for use in TerrSet’s Land Change Modeler (LCM). 
Layers of statewide elevation from a DEM and roads were incorporated in both the
change analysis and forecasting modules, and the team used a 2019 map of Public 
Protected Lands for some forecasting models.

Table 1 
Data used for the Land Use Land Change Models
Satellite & 
Sensor

Earlier Image 
Date

Later Image 
Date

Data Source

Landsat 5 TM 04/01/2010 - 
08/31/2010

N/A GEE, Collection 1 Tier 1 
Surface Reflectance

Landsat 8 OLI N/A 04/01/2020 - 
08/31/2020

GEE, Collection 1 Tier 1 
Surface Reflectance

NAIP N/A 04/01/2018 - 
08/31/2018

GEE, USDA Farm 
Production and 
Conservation

3.1.2 Tidal Marsh Suitability
The team used five criteria to assess the locations of suitable land for tidal marsh 
migration and conservation efforts. The impervious descriptor band was 
downloaded from the USGS National Land Cover Database using GEE to create the
impervious surfaces criterion. The team used a DEM from Delaware’s FirstMap 
website to create a measure of slope, and hydrological data from the USGS 
National Hydrology Dataset to identify water availability. To identify hydric soils, 
the team obtained soil data created by the National Cooperative Soil Survey from 
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Delaware’s FirstMap website. To identify land unavailable to marsh migration due 
to the presence of agricultural crops, the team accessed cropland data from the 
USDA National Agricultural Statistics Service (NASS). More detailed information 
can be seen in Table 2.

Table 2 
Data used in the Tidal Marsh Suitability Model
Data Data Use Data Source Dates 

Collected
National 
Land Cover 
Database

The impervious 
descriptor band was 
downloaded from a land 
cover classification 
image; the layer 
represents all areas of 
Delaware that are 
covered with impervious 
surfaces

USGS National 
Land Cover 
Database 
downloaded from 
GEE

2016

Digital 
Elevation 
Model

DEM layer was used to 
create a measure of slope
in degrees

Delaware’s 
FirstMap website

Winter 
2013/Spring 
2014

National 
Hydrology 
Dataset 
Flowlines

Hydrology flowlines were 
used to identify areas 
with tidal influence and 
water connectivity

USGS National 
Hydrography 
Dataset plus high 
resolution from 
USGS website

August 13, 
2018

Delaware 
Soils 
(downloaded 
by county)

Soil layers used to 
identify hydric soils 
indicative of marshland

Delaware’s 
FirstMap website, 
developed by the 
National 
Cooperative Soil 
Survey

New Castle 
County (2015), 
Sussex County 
(2017), Kent 
County (2017)

Cropland Layer taken from a land 
cover classification 
image; layer represents 
all areas of Delaware that
are covered with 
agricultural land

Taken from the 
USDA NASS 2020 
layer, designed to 
show crop 
distribution. 
Downloaded from 
GEE.

01/01/2020 - 
12/31/2020

3.1.3 Climate Analysis
The team chose to use two different NASA Earth observations to create the climate
analysis. The team selected the Global Precipitation Measurement Integrated 
Multi-Satellite Retrievals (GPM IMERG) Merged Satellite-Gauge Precipitation 
Estimate – Final Run (GPM_3IMERGM v06) to analyze potential seasonal 
precipitation variation between the years 2000 and 2020, and the Terra MODIS 
Monthly Daytime 3min CMG Land-surface Temperature dataset (MOD11C3) to 
investigate variation in seasonal temperature between the years 2000 and 2020. 
For statistical analysis, the team downloaded data from GEE; GPM was available 
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as monthly averages for the study period, while Terra MODIS data was available 
by 8-day average. Data and images from these Earth observations were 
downloaded from NASA EarthData and Giovanni. For map production, the team 
downloaded data in 5-year seasonal averages (2000-2005, 2005-2010, 2010-2015, 
2015-2020). These datasets were chosen because of their relatively high spatial 
resolution (Table 3). Due to the small size of the state of Delaware, it was 
important to use higher resolution datasets to provide a clear analysis of climate 
variables. 

Table 3 
Data used for the Climate Analysis
Satellite & Sensor Earlier 

Image 
Date

Later 
Image 
Date

Data Source Spatial 
Resolution

Global Precipitation 
Measurement (GPM) 
Average Merged 
Satellite-Gauge 
Estimate Final Run 
Monthly

12/1999 11/2020 NASA 
EarthData, 
Giovanni

0.1°, latitude 
and longitude

Terra Moderate 
Resolution Imaging 
Spectroradiometer 
(MODIS) Land Surface
Temperature/Emissivit
y Monthly

12/1999 11/2020 NASA 
EarthData, 
Giovanni

0.05°, latitude 
and longitude

3.2 Data Processing
3.2.1 Land Use Land Cover Change
To download clear Landsat images in GEE, the team used a cloud masking script to
isolate pixels with no data from analysis. The April to August study dates were 
chosen to allow for substantial cloud-free data for masking. The team used the 
same process for the NAIP data, except no cloud masking was necessary, and 2018
was the most recent year for which NAIP imagery was available. Because NAIP 
imagery had such fine resolution (1 meter), the images often exceeded the GEE 
pixel limit. In response, the team aggregated pixels and exported the images at a 
resolution of 5 meters. 

The LULC portion of the project included two parts: RF classification of wetlands 
in the earlier and later images, and change analysis and prediction of future land 
cover performed in TerrSet LCM. Because of the size of the images and time 
constraints, the team only conducted change analysis for the Landsat products. 
NAIP imagery was used to create a map of land cover as of 2018, but an earlier 
image was not created. To perform RF classification, the team created several 
ancillary images to use in concordance with the spectral bands from the satellite 
imagery. These ancillary images were created in ArcGIS Pro using the Raster 
Function suite of tools. Ancillary datasets were chosen based on the results of a 
2019 study evaluating the accuracy of wetland remote sensing methods in China 
(Wang et al. 2019). Table 4 shows the bands used for each of the indices used. The 
team used ancillary data to produce Normalized Vegetation Difference Index 
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(NDVI), Soil Adjusted Vegetation Index (SAVI), Normalized Difference Water Index 
(NDWI), Normalized Difference Built Index (NDBI), and PCA components 1 and 2. 
The team transformed additional elevation, roads, and public protected lands data 
into raster images for LCM change analysis and forecasting.

Table 4 
Due to the fact that NAIP only has Blue, Green, Red, and NIR bands, only the NDVI
and SAVI indexes were created. The table below gives information about the bands
from the different satellites used.
Region Landsat 5 Landsat 8 NAIP
Red Band 1 Band 2 Band 1
NIR (Near Infrared Region) Band 4 Band 5 Band 4
SWIR (Short-Wave Infrared 
Region)

Band 5 Band 6 N/A

3.2.2 Tidal Marsh Suitability
The tidal marsh suitability analysis involved performing data processing steps on 
each of the five criteria. The team extracted the impervious surface layer from the 
USGS National Land Cover Database from 2016 in GEE. The impervious descriptor
band was selected for analysis because it defined where impervious layer pixels 
are roads and provided the best fit description for impervious pixels that were not 
roads. After importing this data into ArcGIS Pro, the team clipped national 
impervious surfaces data to the state extent of Delaware, accessed from FirstMap. 
The team used the Build Raster Attribute Table tool to turn values for impervious 
classifications into an attribute table, and reclassified the value of all developed 
areas to 0 and all undeveloped areas to 1. All developed areas were considered to 
have the same weight.

The team acquired Delaware soils data by county, and merged the data into one 
layer with the Merge tool in ArcGIS Pro. This layer was then changed to a raster 
using the Polygon to Raster tool in order to be added to the Suitability Modeler. A 
measure of slope was created from DEM data using the slope tool. The Resample 
tool was used on the slope data to increase the resolution from 1 meter to 100 
meters to improve processing time and avoid software overload. To identify 
agricultural land, the team downloaded the USDA National Agricultural Statistics 
Service Cropland Data layer using GEE. In ArcGIS Pro, the Reclassify tool was 
used to identify and isolate land used for agriculture from all other land use types. 
Agricultural land was reclassified as 1 and all other land was reclassified as 0. 

Flowline data was downloaded from the USGS National Hydrography Dataset. The 
Euclidean Distance tool was used to determine the distance from sources of water 
like rivers and streams. Under the Environments tab in this tool, a mask of the 
Delaware state outline was used to exclude the Delaware bay. Without this mask 
option, the Euclidian Distance results were incorrect. Following these processing 
steps, all criteria were entered into the Suitability Modeler for analysis.

3.2.3 Climate Analysis
The team used three different methods of climate analysis to visualize and 
interpret trends from the GPM and Terra MODIS datasets. To perform these 
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methods, QGIS, GEE, and Microsoft Excel were all utilized. Terra MODIS data 
were averaged over a monthly time scale to match GPM monthly averages, and 
both datasets were exported as a comma-separated values (CSV) file for further 
analysis. Downloaded data were imported into QGIS and clipped to the bounds of 
the state of Delaware. For the seasonal climate analysis, temperature and 
precipitation records were categorized by seasonal month:

§ Spring to March, April, May 
§ Summer to June, July, August 
§ Fall to September, October, November 
§ Winter to December (of the previous year), January, February (winter 

records listed as the year of the first month, December)

3.3 Data Analysis
3.3.1 Land Use and Land Cover Change
The team used two different methodologies for working with the Landsat and NAIP
products. The Landsat products were classified using the Image Classification 
Wizard tool in ArcGIS Pro, while NAIP products were classified using a script in 
GEE, as the size of these images provided challenges working in ArcGIS tools. This
also allowed the team to compare two RF classification methods. For the Landsat 
data, the team opted to use the Image Classification Wizard for its segmentation 
ability and ease of use. The team used a supervised classification approach along 
with the Object Based Image Analysis option. For both the earlier and later 
Landsat images, the following classes were chosen: Non-Wetland Vegetation/Open 
Space, Wetlands, Water, and Developed space. Non-Wetland Vegetation also 
included areas of forest, shrubland, and cropland. Around 20 to 25 segments were 
chosen in the Image Classification Wizard as training data for each class, located 
in close proximity for the early and later images. In the Train window, the team 
used a RF classification with a maximum of 2000 trees and a maximum tree depth 
of 50. The team selected to use a maximum of 2000 samples per class with the 
following segment attributes: active chromaticity color, mean digital number, and 
standard deviation. In the Classify window, the team ran the model to create 
classified images for both years.

The classification of the NAIP imagery was conducted in GEE using a pixel-based 
RF script from the NASA DEVELOP Code Examples GEE repository, created by the
Colorado State University Natural Resource Ecology Lab. The script compiled 
ancillary data and composited them into a single image. Because of the fine 
resolution of the pixels and the large size of the images, the classification was run 
on the county level instead of the whole state. In addition, a fifth class for 
Forest/Cropland was added, as the high resolution of the NAIP imagery provided 
better differentiation between vegetative signatures. The script produced an 
overall training accuracy assessment and a confusion matrix, an array where one 
axis showed the true values of a selection of training points, and the other 
predicted values derived from the classifier methodology. An r2 score was also 
calculated as a measure of overall accuracy.

To perform land cover change analysis and produce forecasted maps, the team 
used LCM tool in TerrSet. Raster files of the classified Landsat satellite images 
were converted from .tif to .rst format using the Geospatial Data Abstraction 
Library (GDAL) Conversion Utility. Next, the team mapped transitions from 2010 
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to 2020 for each of the four classes. After mapping change over the past decade, 
the team created groups of class transitions, theorized to be reactive to similar 
drivers of change. These groups were chosen to most accurately reflect wetland 
dynamics that are likely to impact future loss or gain. For wetland loss predictions,
the team used a sub-model that included transition from Wetland to Developed, 
Non-wetland Vegetation, and Water. For wetland gain predictions, a model was 
chosen that included transition from Non-Wetland Vegetation to Wetland; the 
transition from developed land to wetland was excluded due to low likelihood, and 
water to wetland was excluded due to the small area of change for the current 
study period, and confusion in modeling the similar spectral signature of the two 
classes. The team chose to run loss and gain models separately, as well as in 
conjunction, because of LCM limitations at modeling different drivers of change.
 
To increase the real-world accuracy of the model, the team added raster images of 
roads and elevation as static layers. After bringing in all relevant data, the team 
ran a Multi-Layer Perceptron (MLP) neural network to analyze each model. The 
tool calculated changes and persistence in pixels between the two initial study 
years for each given model, then ran 10,000 iterations of predictive training to 
determine the model’s skill at predicting the transition of each pixel. After 
receiving information about the model’s accuracy, LCM created Transition 
Potential maps for each possible class transition, which indicated the potential for 
class transition across the study area. Next, LCM created a Markov Chain 
prediction, indicating the likelihood of transition between all classes. The team 
created soft and hard predictions of land cover for the chosen prediction year. Soft
predictions indicated the potential of land cover transformation by the prediction 
year, while the hard prediction demonstrated a commitment to a single scenario of 
change. A layer of Delaware Public Protected Lands from 2019, accessed from 
FirstMap, was used as a mask to indicate areas of protection from change. This 
enabled the team to examine the significance of maintaining protected wetland 
areas. The models were also run without using the protected public lands layer. 
The team created predictions for every five years, from 2025 to 2050, for each 
model.

3.3.2 Tidal Marsh Suitability
Suitable locations for marsh migration based on impervious surfaces, hydric soils, 
slope, water availability, and agricultural land were analyzed in ArcGIS Pro using 
the Suitability Modeler. The model used a suitability score from one to five (one 
being the least suitable and five being the most suitable) with specific weights 
given to each criterion. The reclassified impervious surfaces layer was added to the
Suitability Modeler under Unique Values and Field selection was set to Value. The 
developed areas were given a suitability score of 1 while the undeveloped areas 
were given a score of 5. 

After adding the soils data to the modeler, the team chose the Unique Categories 
option for this dataset in order to rank each drain class from one to five, five being 
the most suitable. Soil drainage class described the frequency and duration of soil 
saturation due to high water tables. The most ideal drainage classes for wetland 
formation and persistence were very poorly drained, poorly drained, and somewhat
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poorly drained. The drain classes were ranked as follows: 5 – Very poorly drained, 
5 – Poorly drained, 4 – Somewhat poorly drained, 3 – Moderately well-drained, 2 – 
Well drained, 2 – Somewhat excessively drained, 1 – Excessively drained, 1- 
Subaqueous, 1 – No Data.

The team added the resampled slope layer into the Suitability Modeler under 
Continuous Functions. The function was set to MSSmall, used when small criterion
values have a much higher preference, because of a preference for small slope 
values for marsh migration. The cropland data was added to the Suitability 
Modeler under Unique Values. Land with crops present was given a suitability 
score of 1, while land free of crops was given a score of 5. The flowlines data layer 
was added to the Suitability Modeler under Continuous Functions. Because low 
distances from flowlines are preferred, the function was also set to MSSmall. Land 
that is closer to rivers or streams was considered more suitable for marsh 
migration. However, this close proximity to flowlines does not explicitly indicate 
tidal influence. After each layer went through its respective transformations, the 
team ran the suitability model at full resolution. The Locate tool was used to 
identify the top five most suitable locations based on the highest average suitability
score. Using the Locate Regions tool or Locate tab within the Suitability Modeler, 
the team used a shapefile of current tidal marsh locations to identify areas that do 
not fall within current tidal marshland. We ran several iterations of the Locate tool 
to identify areas of land that currently contain freshwater wetlands and are also 
adjacent to tidal wetlands.

3.3.3 Climate Analysis
In QGIS, an average for the years 2000-2015 was created using the Calculate 
Raster tool. The same tool was used to calculate the difference in seasonal 
precipitation and temperature between the 2000 to 2015 average and the 2015 to 
2020 average. The seasonal maps that were created from this provided the team 
with seasonal precipitation and temperature difference maps that allowed the team
to see variation in these variables between the two average periods.

The exported CSV data file from GEE was imported into Microsoft Excel to perform
the monthly and seasonal trend analyses. To perform seasonal trend analysis, the 
team categorized monthly averages for temperature and precipitation data of each 
year into each of the four seasons. The seasonal measurements were then plotted 
using a scatterplot graph resulting in 8 individual graphs (two for each season: 
precipitation and temperature). The monthly data was plotted in a single 
scatterplot graph for each metric. A Power Regression Trendline was calculated 
for both analyses and added to each graph to visualize a general, linear trend of 
patterns for the study interval. This trendline was also projected out to 2025 for all
graphs. 

4. Results & Discussion
4.1 Analysis of Results
4.1.1 Land Use Land Cover Change
In total, RF classification was run five times to create five different images (2010 
Landsat 5 TM image, 2020 Landsat 8 OLI image, 2018 NAIP image for New Castle 
County, 2018 NAIP image for Kent County, and 2018 NAIP image for Sussex 
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County). The Image Classification Wizard calculated an overall r2 accuracy score 
for the two Landsat images, while the GEE script did the same for the three NAIP 
images. An r2 score (also known as a coefficient of determination) is a statistical 
measure of accuracy that describes how well variation within a dependent variable
is explained by the independent variable. A higher r2 score indicates that they are 
more similar, while a lower r2 indicates that they are less similar. In this case, the 
r2 score indicates the proportion of the training data that would be properly 
classified if run through the RF process (Table 5).

Table 5
Classified images created and their respective r2 values
Image r2 Value
2010 Landsat 5 0.9567
2020 Landsat 8 0.9681
2018 NAIP New Castle County 0.9136
2018 NAIP Kent County 0.8826
2018 NAIP Sussex County 0.8758

The results of the RF classification were then loaded into the LCM. During change 
analysis, in which changes over the study period were assessed, LCM found that 
there was both gain and loss in wetland area during the study period. The results 
of the change analysis can be seen in Table 6. The majority of wetland pixels 
persisted through the time period, while the smallest class of pixels were those 
who transitioned into wetland from other classes. Accounting for all loss and gain, 
there was a net loss of 4,434.05 acres of wetland area between 2010 and 2020.

Table 6
The area of wetland gain, loss, and persistence during the study period from 2010 
to 2020.
Wetland Change (2010-2020) Area (Acres)
Loss 57,829.91
Gain 53,395.86
Persistence 116,268.87

As part of the learning process to create Transition Potential maps, LCM produced 
a report for each grouped sub-model of class transitions to indicate the success at 
predicting pixel changes for each class between the 2010 and 2020 images. This 
helped the team determine which class transitions to group together for the 
predictive sub-models, and provided feedback about which variables had the 
greatest effect on model skill. Table A1 in Appendix A presents accuracy and skill 
assessments for the two final models of change based on current patterns of 
wetland loss and gain. Unfortunately, due to the limitations of LCM at modeling 
the effects of different drivers of change, the maps produced are limited in their 
capacity to accurately reflect future land cover change. As noted in the 
methodology, the first model followed patterns of wetland loss transitions from 
wetland to water, developed land, and non-wetland vegetation. The second model 
followed patterns of wetland gain transitions from non-wetland vegetation to 
wetland. A third model, following the loss and gain patterns of the first two models,
was created as well.
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By following these different models of prediction, the team was able to create maps
that demonstrate possible land cover outcomes for every five years out to the year 
2050. LCM produced both soft and hard predictions for each year, with the soft 
prediction representing the potential for class transition, and the hard prediction 
demonstrating one possible scenario for land cover. Figure 2 shows a hard 
prediction of 2050 land cover from a model following current wetland loss 
patterns, with the addition of a mask of public protected lands. This model 
predicted a total loss of 105,939.13 acres of wetland by 2050 (Table A2). Figure 3, 
on the other hand, shows the results of a model that followed current patterns of 
wetland gain, specifically from wetland to non-wetland vegetation. The team also 
included the mask of public protected lands as part of the wetland gain 
predictions. This model predicted wetland gain amounting to 49,256.39 acres by 
2050 (Table A3). The model that incorporated both loss and gain indicated a 
predicted net loss of wetland area amounting to 56,559.67 acres by 2050, given 
current public protected lands (Table A4, Figure A1), compared to 2050 net loss of 
56,570.16 acres in the model without protected lands (Table A5, Figure B2). Soft 
predictions of the models are located in Appendix A (Figures A5 – A7).

4.1.2 Tidal

Marsh Suitability
After several
iterations of the
suitability model
which involved
altering the weight
assigned to each
criterion, a final
suitability map was
created. Red,
yellow, and green
portions of the

map describe areas least suitable, moderately suitable, and
most suitable, respectively (Figure 4). Based on the results of the Locate Regions 
tool, many of the most suitable areas were in the southern part of the state. 
However, most of these areas were too far from the coast and were not close to 
existing saltwater tidal marshes. Since the partners were interested in areas that 
have the potential to shift from freshwater marsh to saltwater marsh, these areas 
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 Figure 2 Predicted 2050 land cover, based on 
current patterns of wetland loss and a mask of 
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were not included in the final product. The top five most suitable plots of land were
located in the middle of the Delaware coastline located in Kent County (See 
Figures B1-B3). 

The suitability map can be used in combination with the LULC projection maps to 
identify land parcels where conservation efforts would be most successful. Figures 
B4 and B5 in Appendix C show the LULC change results for wetland loss and gain 
in the year 2050 overlaid with the top five most suitable locations for marsh 
migration within the coastal zone. Together these overlaid layers indicate which 
suitable locations may have the greatest long-term success for restoration or 
preservation projects, given current patterns of wetland change. For instance, in 
the wetland loss scenario, location four falls adjacent to an area predicted to 
persist as wetland by 2050, and may offer greater success as an area for wetland 
preservation than other locations that fall well outside the predicted 2050 wetland 
area. 

Figure 4. Marsh migration suitability map created for the state of Delaware based 
on five environmental variables.

4.1.3 Climate Analysis
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After creating maps depicting the difference between temperature and 
precipitation averages from 2000 to 2015 and 2015 to 2020, conclusions from the 
maps and data were drawn. Starting with precipitation (Figure C1), it is seen that 
summer has the largest increase in seasonal precipitation, while fall has the 
largest decrease. These maximum and minimum differences occur in the northern 
portion of the state. This is likely because of its proximity to hills and slope 
variation. Looking at temperature (Figure 6), the largest increase in seasonal 
temperature occurs in winter. Fall also sees an increase while spring and summer 
sees slight decrease. These observations can be important in analyzing marsh 
migration and wetland formation or destruction because they provide possible 
reasoning for loss or gain. It is important to note that climate variability is more 
accurate and definitive when a longer time period is used. Due to the constraints of
this project, only a 20-year time period was able to be analyzed. 

Figure 5. Difference maps of average seasonal daytime temperature change from 
2000-2015 to 2015-2020.

Seasonal trends in Delaware remain relatively consistent over the last 20 years. 
This could be related to the proximity to the Atlantic Ocean which aids in 
stabilizing annual temperatures and precipitation. Temperature fluctuation in 
spring (Figure C2) and fall (Figure C3) have the greatest difference between the 
maximum and minimum temperatures through the season while summer months 
have a linear, stable temperature pattern (Figure C4). Winter, however, shows a 
sharper incline in linear trend than the other seasons (Figure C5) and seems to 
have a steady increase in temperature since 2000. Precipitation patterns in spring 
(Figure C6) and summer (Figure C7), though scattered, show a relatively flat 
trendline indicating no significant increase or decrease over the time period. 
Winter (Figure C8) and fall (Figure C9) precipitation patterns demonstrate an 
increasing trend since 2000. Though this is the case, winter months show the 
highest increasing trend overall for the last 20 years. This trend can be seen in the 
northern region of Delaware (Figure 5) which could be a result of urbanization and
slope variation in the area. Overall, there is a general increasing trend among the 
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climate variable across Delaware (Figure C10 and C11). As a note, linear 
regressions do not provide high accuracy assessments for non-linear data such as 
the data used in this study. The graphs produced for this section (Appendix C) are 
to be used as informative guides for climatic trends in Delaware and are subject to 
change.

4.2 Future Work
Due to the complexities of tidal marsh systems and the factors that impact them, 
there are several variables affecting marsh migration potential that were not able 
to be analyzed in this short-term study. Variables identified by both the DEVELOP 
team and DNREC include the effects of land subsidence, marsh drowning, wind 
fetch, and edge erosion on the formation of tidal marsh habitat. In addition, future 
work on this topic could include analyzing regression relationships between 
different variables and tidal marsh suitability to aid in the creation of a repeatable 
model that would predict tidal marsh suitability in specific areas of interest. Future
areas of research could focus on implications of different sea-level rise scenarios, 
regionally specific LULC studies to include more classes, endangered species 
affected by coastal marsh habitat loss, and ways to implement conservation 
methods, as well as detailed salinity studies to identify and analyze different types 
of tidal marsh systems. Moving forward, our team would suggest choosing a 
smaller area of interest due to time constraints, processing obstacles, and the 
possibility of a more detailed analysis of tidal marsh processes.

5. Conclusions
While there was observed wetland loss in many parts of Delaware between 2010 
and 2020, there was a substantial amount of gain (57,829.91 acres of loss versus 
53,395.86 acres of gain). The results show that while significant wetland loss 
(wetland becoming non-wetland vegetation, developed, and water) is a likely 
outcome for many wetland areas, there are areas where transitions from non-
wetland vegetation to wetland is likely. Sea-level rise may result in some coastal 
wetland loss, it may also contribute to wetland gain further inland, particularly in 
vegetated areas with low elevation. Seasonal trends in Delaware’s climate 
remained relatively consistent over the last 20 years. Of all the seasonal trends, 
winter had the highest increasing pattern over the time interval of this study in 
both precipitation and temperature measurements. 

Suitable land for marsh migration and conservation based on five environmental 
factors were identified through suitability analyses. Though much of the suitable 
land is currently covered by tidal marsh, suitable non-wetland land was identified 
throughout the state with the most suitable land parcels located in Kent County. 
The LULC change maps can be used in combination with the suitability maps to 
gain a better perspective on which sections of land would be most feasible for 
conservation success in the future.
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7. Glossary
DNREC – Delaware Department of Natural Resources and Environmental Control
Earth observations – Satellites and sensors that collect information about the 
Earth’s physical, chemical, and biological systems over space and time
GPM – Global Precipitation Measurement Core Observatory
Land Change Modeler (LCM) – A tool within TerrSet that is adept at quantifying 
land change between two dates, creating transition potentials for specific classes, 
and predicting land change into the future
MODIS – Moderate Resolution Imaging Spectroradiometer
NAIP – National Agriculture Imagery Program 
Power Regression Trendline – A curved line used on datasets that compare 
measurements that change 
over a specific rate (months/years)
Random Forest (RF) Algorithm – a type of machine learning algorithm designed
for classification or regression. In classification, random forest runs several 
decision tree algorithms that categorically ‘vote’ on how individual pixels should be
classified
Sudden Wetland Dieback – A condition characterized by the rapid, partial, or 
complete death of emergent saltmarsh vegetation
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9. Appendices

Table A1
Assessments of LCM predictive accuracy rate and skill measure for sub-models 
that measure wetland loss and gain, as established from 2010 and 2020 class 
transitions. Accuracy rate refers to the model’s ability to predict whether 
validation pixels would change. Skill measure was calculated by subtracting 
accuracy expected by chance from the measured accuracy.

Table A2
Transitions from wetland to other classes by 2050, in a predictive model of wetland
loss with a mask of public protected lands from 2019.
Type of Transition Area of Wetland 

Loss by 2050 
(Acres)

Total Wetland 
Loss by 2050 
(Acres)

Wetland to Water 1,541.14
105,939.13Wetland to Developed 51,798.48

Wetland to Vegetation 52,599.51

Table A3
Transitions from other classes to wetland by 2050, in a predictive model of wetland
gain that includes current patterns of change from non-wetland vegetation to 
wetland. Prediction included a mask of public protected lands from 2019.
Type of Transition Area of Wetland Gain by 2050 

(Acres)
Vegetation to 
Wetland/Total Gain

49,256.39

Table A4
Changes in wetland area by 2050, as determined by a predictive model of wetland 
loss and gain with the inclusion of a public protected lands mask. Corresponds to 
Figure A1.

Type of Transition (2050) Area 
(Acres)

Total Wetland 
Loss or Gain 
(Acres)

Net Total 
Wetland Loss 
(Acres)

Non-Wetland Vegetation to 
Wetland

49,302.11 49,302.11 56,559.67

Wetland to Water 1,541.14 105,861.78
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Transitions Included in Sub-Model Accuracy Rate Skill 
Measure

Wetland Loss: Wetland to Water, 
Developed, and Non-Wetland Vegetation

57.75% 0.4367

Wetland Gain: Non-Wetland Vegetation 
to Wetland 

66.30% 0.3259



Wetland to Developed 51,849.48
Wetland to Non-Wetland 
Vegetation

52,471.16

Figure A1. Predicted 2050 land cover, based on a model that included current 
patterns of both loss and gain. This prediction included a mask of public protected 
lands as an incentive.
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Table A5
Changes in wetland area by 2050, as determined by a predictive model of wetland 
loss and gain without a public protected lands mask. Corresponds to Figure A2.

Type of Transition (2050)
Area 
(Acres)

Total Wetland 
Loss or Gain 
(Acres)

Net Total 
Wetland Loss 
(Acres)

Non-Wetland Vegetation to 
Wetland

49,294.33 49,294.33

56,570.16
Wetland to Water 1,542.26

105,864.49
Wetland to Developed 51,719.32
Wetland to Non-Wetland 
Vegetation

52,602.91
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Figure A2. Predicted 2050 land cover, based on a model that included current 
patterns of both loss and gain. This prediction did not use a mask of public 
protected lands, resulting in slight differences in predictions made by the model 
that incentivized areas of protected land, and overall, slightly greater net wetland 
loss.

Table A6
Transitions from wetland to other classes by 2050, as predicted by a model of 
wetland loss without a public protected lands mask. Corresponds to Figure A3.
Type of Transition 
(2050)

Area of Wetland Loss 
(Acres)

Total Loss (Acres)

Wetland to Water 1,542.26
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105,864.43Wetland to Developed 51,749.41
Wetland to Vegetation 52,572.76

Figure A3. Predicted 2050 land cover, based on a wetland loss model created from 
current patterns of wetland loss transitions from wetland to developed, non-
wetland vegetation, and water. This prediction did not use a mask of public 
protected lands as an incentive, resulting in some predicted transition from 
wetland to developed area in places that were classified as protected lands in 
2019, such as the area in and around Bombay Hook National Wildlife Refuge.

Table A7
Transitions from non-wetland vegetation to wetland by 2050, as determined by a 
predictive model of wetland gain without a public protected lands mask. 
Corresponds to Figure A4.
Type of Transition (2050) Area of Wetland Gain 

(Acres)
Non-Wetland Vegetation to 
Wetland/Total Gain

49,294.18
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Figure A4. Predicted 2050 land cover, based on a wetland gain model created from
current patterns of transition from non-wetland vegetation to wetland. This 
prediction did not use a mask of public protected lands as an incentive, resulting in
slight differences in predictions made by the model that incentivized areas of 
protected land.
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Figure A5. Soft prediction of land cover change by 2050, as determined by a model
of wetland loss created from current patterns of transition from wetland to water, 
developed land, and non-wetland vegetation. Layers of elevation and roads in the 
study area were included in determining wetland loss potential. 
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Figure A6. Soft prediction of land cover change by 2050, as determined by a model
of wetland gain created from current patterns of transition from non-wetland 
vegetation to wetland. Layers of elevation and roads in the study area were 
included in the determination of wetland gain potential, and the likelihood of 
inland wetland gain is higher in areas with low elevation. 
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Figure A7. Soft prediction of land cover change by 2050, as determined by a model
of combined wetland gain and loss. Layers of elevation and roads in the study area 
were included in the determination of change potential. This map indicates not 
only wetland change potential, but vulnerability to change across all four land 
cover classes used in the model.
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Appendix B – Tidal Marsh Suitability

 

Figure B1. A suitability map identifying suitable land containing freshwater 
wetlands that are also adjacent to tidal wetlands. This map shows the plot of land 
with the highest suitability rating located near the Little Creek Wildlife Area and 
Pickering Beach.
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Figure B2. A suitability map identifying suitable land containing freshwater 
wetlands that are also adjacent to tidal wetlands. This map shows land ranked 2-4 
located near Big Stone Beach and the city of Thompsonville.
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Figure B3. A suitability map identifying suitable land containing freshwater 
wetlands that are also adjacent to tidal wetlands. This map shows the 5th most 
suitable area of land located near St. Jones Reserve and the community of Kitts 
Hummock.
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Figure B4. Top five suitable locations for marsh migration overlaid with the LULC 
change 2050 wetland loss projection.
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Figure B5. Top five suitable locations for marsh migration overlaid with the LULC 
change 2050 wetland gain projection.
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Appendix C – Climate Analysis

 Figure C1. Difference maps of average seasonal precipitation change from 2000-
2015 to 2015-2020.
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Figure C2. A scatterplot trend graph of seasonal average temperature across the 
state of Delaware for spring. The trend is represented by a Power Regression 
Trendline calculated using Microsoft Excel.

Figure C3. A scatterplot trend graph of seasonal average temperature across the 
state of Delaware for fall. The trend is represented by a Power Regression 
Trendline calculated using Microsoft Excel.

Figure C4. A scatterplot trend graph of seasonal average temperature across the 
state of Delaware for summer. The trend is represented by a Power Regression 
Trendline calculated using Microsoft Excel.
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Figure C5. A scatterplot trend graph of seasonal average temperature across the 
state of Delaware for winter. The trend is represented by a Power Regression 
Trendline calculated using Microsoft Excel. One value was removed from this 
dataset (February 2015) due to the inability of the Power Regression to compute 
using negative values.

Figure C6. A scatterplot trend graph of seasonal average precipitation across the 
state of Delaware for spring. The trend is represented by a Power Regression 
Trendline calculated using Microsoft Excel.
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Figure C7. A scatterplot trend graph of seasonal average precipitation across the 
state of Delaware for summer. The trend is represented by a Power Regression 
Trendline calculated using Microsoft Excel.

Figure C8. A scatterplot trend graph of seasonal average precipitation across the 
state of Delaware for winter. The trend is represented by a Power Regression 
Trendline calculated using Microsoft Excel.

34



Figure C9. A scatterplot trend graph of seasonal average precipitation across the 
state of Delaware for fall. The trend is represented by a Power Regression 
Trendline calculated using Microsoft Excel.

Figure C10. A scatterplot trend graph of monthly average precipitation (GPM) 
across the state of Delaware for each year. The trend is represented by a Power 
Regression Trendline calculated using Microsoft Excel.

35



Figure C11. A scatterplot trend graph of monthly average land surface 
temperature (Terra MODIS) across the state of Delaware for each year. The trend 
is represented by a Power Regression Trendline calculated using Microsoft Excel.
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